An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil
Huairong Zhou,
Hongwei Li,
Runhao Duan and
Qingchun Yang
Energy, 2020, vol. 196, issue C
Abstract:
Shale oil produced from oil shale pyrolysis is regarded as an important alternative to crude oil. There is the conventional oil shale pyrolysis technology represented by Fushun-type, which suffers from low utilization efficiency of oil shale and low shale oil production. The development of the indirectly heated moving bed technology can solve these problems. However, this new technology requires extra heat for oil shale pyrolysis which means low pyrolysis efficiency and it also suffers from the production of low quality shale oil. The driving force for the efficient pyrolysis of oil shale and high-value conversion of shale oil calls for the involvement of high-value fuel to supply heat for pyrolysis and hydrogen source for shale oil upgradation. Coal is produced in the process of oil shale mining. A new process of coal-assisted oil shale refinery is therefore proposed in this study. Coal is used for gasification to produce syngas. Part of the syngas is used as fuel to supply additional heat for oil shale pyrolysis and the remaining syngas is used to produce hydrogen, which is then used for shale oil hydrogenation to increase the quality of shale oil. Results show that the energy efficiency of the new process is increased by 5%–24% and has a 53%–75% increase of the return on investment, comparing to those of the conventional Fushun-type technology.
Keywords: Oil shale refinery; Modelling; Technical analysis; Economic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302139
DOI: 10.1016/j.energy.2020.117106
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().