EconPapers    
Economics at your fingertips  
 

A comparative study to evaluate the effects of pre-chamber jet ignition for engine characteristics and emission formations at high speed

Ahmet Alper Yontar

Energy, 2020, vol. 210, issue C

Abstract: The pre-chamber ignition technology is a good solution that can make spark-ignition engines gradually more efficient. The novelty of the study is the testing of the pre-chamber jet ignition according to detailed air-fuel mixture range and fuel injection rates by combustion chambers. The main points in using this pre-chamber jet ignition were to observe the effect of reducing fuel consumption and emission formation. The tests were carried out for 0.80–1.80 lambda ranges and the pre-chamber injection/main chamber injection mass ratio ranges. A commercial RON 98 fuel was used at two ignition modes in tests for 5000 rpm high engine speed. At the pre-chamber jet ignition usage, the in-cylinder pressure for 1.00 lambda is overall 1.78% and 19.89% higher than the 0.80 lambda and the 1.80 lambda. The brake specific fuel consumption is about 8.67% lower than the spark-plug ignition usage at 0.80–1.20 lambda range. The HC formation is overall 8.12% lower than the spark-plug usage. The NOx formation for the spark-plug ignition is approximately 53.97% higher than the pre-chamber jet ignition usage as the temperature in-cylinder is high. The pre-chamber jet ignition was led to a much shorter flame development time and better combustion stability than the spark-plug.

Keywords: Pre-chamber jet ignition; Lean condition; Low temperature combustion; RON 98; HC; NOx (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220317485
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317485

DOI: 10.1016/j.energy.2020.118640

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220317485
            
OSZAR »