EconPapers    
Economics at your fingertips  
 

U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan

Xue Wang, Hongchao Wang, Wenbing Su, Tingting Chen, Chang Tan, María A. Madre, Andres Sotelo and Chunlei Wang

Energy, 2022, vol. 238, issue PB

Abstract: Strong thermal stress caused by high temperature and difference of thermal expansion coefficient (CTE) will negatively influence the lifespan of the thermoelectric module. In this work, a new high-temperature CaMnO3-based U-type unileg thermoelectric module, combining a unileg structure with pn-junction, is proposed and investigated. The novel design avoids the device failure due to different CTEs and high temperature gradients. As a result, the maximal thermal stress (σmax,TEM) of 3.31 GPa and fatigue life of 41686 cycles are 46 % and 132 % of those of traditional modules at 6 W and 300 K, respectively. To further relieve stress concentration, the effect of rounded corners (ru, rl), Ag layer thickness (HAg) and length of right legs (LR), have been studied. It has been found that larger ru, and rl are suitable to relieve the local stress concentration, and the lowest σmax,TEM and highest power (Pmax) are achieved at (ru,rl)=(0.1,0) and (0,0.5). Moreover, larger LR and HA are beneficial for mechanical properties by decreasing the peak stress and dispersing the high thermal stress regions, while module performance is improved at lower LR and HAg. Results obtained from this U-type unileg thermoelectric module should influence and guide the design and optimization of high-temperature thermoelectric generators.

Keywords: Thermoelectric module; U-type unileg structure; Finite-element simulation; Thermal stress; Lifespan analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020193
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020193

DOI: 10.1016/j.energy.2021.121771

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020193
            
OSZAR »