EconPapers    
Economics at your fingertips  
 

Experimental investigation on effect of drag-reduced cavitation on stability of a blub turbine

Jianjun Feng, Nannan Zhao, Guangkuan Wu, Guojun Zhu, Zhenguo Ge, Tianshu Li and Xingqi Luo

Energy, 2025, vol. 327, issue C

Abstract: Cavitation significantly influences the stability and flexibility of hydraulic turbines. However, its specific effects on vibrations and pressure fluctuations, particularly under the drag-reduced cavitation condition, remain poorly understood. In this study, the pressure fluctuation and vibration signals under the drag-reduced cavitation condition within a bulb turbine are simultaneously captured. The results indicate continuous cavity formation at the blade tip under drag-reduced cavitation. In this state, the efficiency recovery correlates with stabilized cavitation flow and attenuated rotor-stator interaction effect. Under the drag-reduced cavitation condition, the intensity of the medium-frequency component of both pressure fluctuation and vibration reaches its minimum, with distribution peaks becoming more pronounced, indicating the improved flow stability. The multifractal strength of pressure fluctuation is minimal under drag-reduced cavitation condition, with the average intensity being approximately 70 % of that under incipient cavitation condition. Correlation analysis reveals that the vibration is induced by the pressure fluctuation in the bulb turbine. The cross-correlation between the two signals exhibits multifractal characteristics. The nonlinear coupling effect and cross-correlation reach the maximum value under the drag-reduced cavitation condition. A comprehensive analysis of drag-reduced cavitation's impact on stability is crucial for improving the performance of bulb turbines.

Keywords: Drag-reduced cavitation; Bulb turbine; Pressure fluctuation; Vibration; Stability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225021590
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021590

DOI: 10.1016/j.energy.2025.136517

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021590
            
OSZAR »