EconPapers    
Economics at your fingertips  
 

Efficient shallow learning mechanism as an alternative to deep learning

Ofek Tevet, Ronit D. Gross, Shiri Hodassman, Tal Rogachevsky, Yarden Tzach, Yuval Meir and Ido Kanter

Physica A: Statistical Mechanics and its Applications, 2024, vol. 635, issue C

Abstract: Deep learning architectures comprising tens or even hundreds of convolutional and fully-connected hidden layers differ greatly from the shallow architecture of the brain. Here, we demonstrate that by increasing the relative number of filters per layer of a generalized shallow architecture, the error rates decay as a power law to zero. Additionally, a quantitative method to measure the performance of a single filter, shows that each filter identifies small clusters of possible output labels, with additional noise selected as labels outside the clusters. This average noise per filter also decays for a given generalized architecture as a power law with an increasing number of filters per layer, forming the underlying mechanism of efficient shallow learning. The results are supported by the training of the generalized LeNet-3, VGG-5, and VGG-16 on CIFAR-100 and suggest an increase in the noise power law exponent for deeper architectures. The presented underlying shallow learning mechanism calls for its further quantitative examination using various databases and shallow architectures.

Keywords: Deep learning; Machine learning; Shallow learning (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124000219
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000219

DOI: 10.1016/j.physa.2024.129513

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437124000219
            
OSZAR »